Это пособие предназначено для студентов, изучающих курс дискретной математики и (или) теории графов. С его помощью Вы освоите тему "Максимальный поток и минимальный разрез в сети". Прямо из этого пособия Вы можете посчитать своё ИДЗ, даже если у Вас нет на компьютере MATLAB. Если же у Вас есть MATLAB, перейдите на эту страницу: там у Вас есть возможность вмешаться в сценарий (программу) вычислений. Здесь же задача о максимальном потоке в сети решается путём сведения к задаче линейного программирования.

Введём обозначения:

Тогда задача о максимальном потоке в сети может быть сформулирована как задача линейного программирования:

Максимизируется общий поток, выходящий из источника (1). При этом в любой промежуточной вершине входящий поток равен выходящему (2), а пропускные способности дуг ограничены (3).

Задача, двойственная к задаче о максимальном потоке − это задача о минимальном разрезе. Для построения минимального разреза можно воспользоваться теоремами двойственности. Нужно:

Для вырожденной задачи на данной странице строится первый, ближайщий к источнику минимальный разрез.

Для правильной работы с этой страницей Ваш браузер должен поддерживать сценарии Java Script. Включите их.

Введите исходные данные в находящиеся ниже области ввода. В первой области нужно (точнее, можно) ввести координаты вершин для рисования орграфа сети. Они задаются в виде матрицы n×2: в первом столбце − x координаты, во втором − y-е. Числа можно задавать целые, с десятичной точкой или в экспоненциальной форме. Числа разделяйте пробелами. Общее количество строк в этой области ввода определяет размер орграфа n − количество вершин. Эти исходные данные (координаты вершин) не являются обязательными: если их не задать, то орграф сети будет рисоваться в виде правильного n-угольника, а количество вершин будет определяться максимальным номером вершины в следующей области ввода.

В следующей области ввода левая часть − обязательная для заполнения. В ней определяется структура орграфа сети. Каждая дуга в орграфе соединяет две вершины. Номера этих вершин задаются в виде матрицы m×2 в левой части второй области ввода. На каждой строке вначале задаётся 1-я вершина (хвост, источник) дуги, а затем через пробел 2-я (остриё, сток) дуги. В этих столбцах должны быть натуральные числа от 1 до n включительно. Числа разделяйте пробелами. В правой части задаются пропускные способности дуг − положительные действительные числа. Если этот столбец не задан, все пропускные способности считаются одинаковыми (единичными). Общее количество чисел в каждом из этих столбцов определяет мощность орграфа m − количество дуг.

Координаты вершин
x   (пробел)   y

Дуги и их пропускные способности
v1  (пробел)  v2 Вес